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Chapter Twa

Johnson 1963; Bear 1972; Bear and Verruijt 1987) and the effects of diffusion can be
ignored. Under these conditions D; can be replaced with ¢,z in the advection-dispersion
equations.

Analytical Solutions of the Advectian-Dispersion Equation
2.8.1 Methods of Solution

The advection-dispersion equations can be solved by cither numerical or analytical
methods, Analytical methods involve the solution of the pattial differential equations
using calculus based on the initial and beundary value conditions. They are limited to
stmple geometry and in general require that the aquifer be homogencous. A number of
analytical solutions are presented in this chapter, They are useful in that they can be
solved with a calculator and a table of error functions or even a pencil and paper, if
one is 50 inclined.

Numerical methods involve the solution of the partial differential equation by
numerical methods of analysis. They are more powerful than analytical solutions in the
sense that aquifers of any geometry can be analyzed and aquifer heterogeneities can be
accommodated. However, there can be other problems with numerical models, such as
numerical errors, which can cause solutions to show excess spreading of solute fronts

of plumes that are not related to the dispersion of the tracer that is the subject of the .

modeling, Bear and Verruijt (1987) present a good introduction to the use of numerical
models to solve mass transport equations. These solutions are normally found by meth-
ods of computer modeling, a tpic beyond the scope of this text.

2.8.2 Boundary and Initial Conditions

I order to obtain a unique solution to a dillerential cquation it is necessary to, specily
the initial and the boundary conditions that apply, The initial conditions describe
the values of the vatiable under consideration, in this case concentration, at some initial
time equal to 0. The boundary conditions specify the interaction between the area
under investigation and its external environment.

There are three types of boundary conditions for mass transport. The boundary
condition of the first type is a fixed concentration. The boundary condition of the
second type is a fixed gradient. A variable flux boundary constitutes the boundary
condition of the third type,

Boundary and initial conditions are shown in a shorthand form. For one-dimen-
sional flow we need to specify the conditions relative to the location, x, and the time,
Lt By convention this is shown in the form

C(x, 1) = c(8)
where €(#) Is some known function.
For example, we can write
co, =0, t=0
G2 0) =9, xz0
Cloo, £) =0, t =0
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The first statement says that for all time ¢ equal to or greater than zero, at x = 0
the concéntration is maintained at . This is a fixed-concentration boundarty condition
located at x = 0 (first-type boundary). The second staternent is an initial condition that
says at ume ¢ = 0, the concentration is zero everywhere within the flow domain, that is,
where x is greater than or equal zero. As soon as flow starts, solute at a concentration
of & will cross the x = 0 boundary.

The third condition shows that the flow system is infinitely long and that no matter
how large time gets, the concentration will still be zero at the end of the system {first-

type boundary condition at x = o). .
We could also have specified an initial condition that within the domain the initial

solute concentration was . This would be written as
Clx=¢, x=0

Other examples of concentration (first-type) boundary conditions are exponential decay

of the source term and pulse loading at a constant concentration for a period of time

followed by another period of time with a different constant concentration.
Exponential decay for the source term can be expressed as

co, =g

where 7= a decay constant.
Pulse loading where the concentration is &, for times from 0 to f, and then is 0

for all ime more than %, is expressed as
(0, =¢ O< i<ty .
c(0,H=0 t> 1,
Fixed-gradient boundaries are expressed as
dc dc
P '—'_.f(t) or el =0
where f(#) is some known function. A common fixed-gradient condition is dC/dx = 0,

or a no-gradient boundary.
The variable-flux boundary, a third type, is given as

C
—DQ—— + v,C= v.C(1)
dx

where €{¢) is a known concentration function. A common variable-flux boundary is a
constant flux with a constant input concentration, expressed as

dc
—D— 4 vC
(0% )

2.8.3 One-Dimensional 5tep Change in Concentration (First-Type Boundary)

=vG
[}

x=

Sand column experiments have been used to evaluate both the coefficients of diffusion
and dispersion at the laboratory scale. A tube is filled with sand and then saturated with
water. Water' is made to flow through thé wbe at 2 steady rate, creating, in effect, a
permeameter. A solution containing a tracer is then introduced into the sand column
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1;1 place of Lhe.water. The initial concentration of the solute In the column is zero, and

It1e concentration of the tracer solution ig Go. The tracer in the water exiting the 'tube

is analyzed, and the ratip of G the tracer concentration at time L over (, the in-
L}

J C[ed tracer concentratjon 15 p]ot[ed asa funcll(n] l T =,
¥ *
S ol ume, hlS 15 Called a .ﬁxed Step

The boundary and initial conditions are given by

C(x0)=0 x>0 Initial condition
c(0, =g t 20

C(w, 1} =0 t > 0} Boundary conditions

The solution 10 Equation 2.18 for these conditions is (Ogata and Banks 1961}

Cq[ (L — U I) WA L
C=-=erfe =)+ st +
2 2Dyt exp(DL) erfc(z,/q:)} (2.21)

This equation may be expressed in dimensionless form as

P;- 142
Gtz P) =05 {erfc[(a) (1 - fn)J + exp(#,) erfc[(;%)m(l + fn)]}

(2.22)
where
Iy = v /L
Cr = O/,
£, = Peclet number when flow distance, £, is chosen as Lﬁc reference Jength

(P, = 1/D)

erfc = complementary error function

2.8.4 OQne-Dimensional Conlinuvaus Injection into n Flow Field
{Second-Type Boundary)

In nature there are not many situations where there would be a sudden change in the-

an aquifer as a line source (Figure 2.8).

The rate of injection is considered o he constant, with the injected mass of th
solure proportional to the duration of the injection. The initial concemrﬁtioh of the
solute in the aquifer is zero, and the concentration of the solute being injected i N
The solute is free to disperse both up-gradient and down-gradient e G

The boundary and initial conditions are .

o (= 0) =0, T LX< fo0 Initial condition
f—m nec(x' t)dx.: COneUxt; > 0
C{co, ) =0 > 0} Boundary conditions
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FIGURE 2.8 Leckoge from a canal as a line source for injection of o contominant inte an aquifer, Source:
J. P. Sauty, Waler Resources Research 16, no. 1 (1980):145—58. Copyright by the Americon Geophysical

Union,

The second boundary condition states that the injected mass of contaminant over the
domain from ~ o0 to + oo is proportional to the length of time of the injection.
The solution to this flow problem (Sauty 1980) is

- L L {
C= & [erfc(L u,r) - exp(i) crfc( R )j] (2.23)
2 A24/Dyt 2 2Dyt

In dimensionless form this Is

P 142
Celts, P} = O.S{erfc[(f) (1~ tR)}
r

P\ ‘
— exp(£,) erfc[(—’) a+ tﬂ)]} (2.24)
4tp

It can be seen that Equations 2.21 and 2.23 are very similar, the only difference
being that the second term is subtracted rather than added in 2.23.
Sauty (1980) gives an approximation for the one-dimensional dispersion equation

as
c=& ’:erfc("-'—-—L = ”‘t):l (2.25)
2 2Dt 7

In dimensionless form this is

LAY
Celty, P.Y=105 erfc[(—‘) Q —rn)] (2.26)
' g
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FIGURE 2.9 Dimensionless-type curves for the continuous injection of g tracer inio o one-dimensional
Row field. Source: J, P. Sauty, Water Resources Research 16, no. 1 {1980):145-58, Copyright by the
Americon Geophysical Union,

This approximation comes about because for large Peclet numbers, the second
term of Equations 2.21 and 2.23 is much smaller than first term and can be neglected.
Figure 2.9 demonstrates under what conditions this approximation is valid. In Figure
2.9 the dimensionless concentration, Gy, Is plotted as a function of dimensionless time,
fy, for continuous tracer Injection using the fixed-step function, Equation 2.22, the
contnuous-injection function, Equation 2.24, and the approximate solution, Equation
2.26. Curves are plotted for three Peclet numbers, 1, 10, and 100. Sauty (1980) defined
a Peclet number as £, = 4,1/D,, where Lis the distance from the point of injection of
the solute o the paint of measurement and D is the coefficient of hydrodynamic
dispersion. This Peclet number defines the rate of tansport by advection to the rate of
transport by hydrodynamic dispersion. For Peclet number 1, the fixed-step function and
the continuous-injection function give quite different results, whereas for Peclet number
100 they are almost identical. The approximate solution lies midway between the other
two. This figure suggests that for Peclet numbers less than about 10, the exact solutions
need to be considered, whereas for Peclet numbers greater than 10, the approximnate
solution is probably acceptable, especially as the Peclet number approaches 100, This
Peclet number increases with flow-path length as advective transport becomes more
dominant over dispersive transport. Thus for mass transport near the inlet boundary, it
is important to use the correct equation, but as one goes away from the infet boundary,
it is less important that the correct form of the equation is employed,

2.8.5 Third-Type Boundary Condifion

A solution for Equation 2.18 for the following boundary condition was given by van
Genuchten (1931).

P2-3
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C(x0)=0 Initial condition

(—DE+ v,C)
dx

ac
ax

= 2,G
x=0

Boundary conditions

= (finite)

x—+ o)

The third condition specifies that as x approaches infinity, the c.:oncemraition gra-
dient will still be finite. Under these conditions the solution to Equation 2.18 is:

2,012 (L— v,)?
G L—uv! vt [_ e ]
C= > [ rfc[zm + 2D, exp TV DLt
Lp il ude vi,:) erfc[L —_v,tjl ‘ (2.27)
_5(1 +-BL-+ DL)CXP(DL 2Dt

This equation also reduces to the approximate solution, Equation 2.25, as the flow

length increases.

2.8.6 One-Dimensional Slug Injection inte a Flow Field

- . : g ional
If a sfug of contamination is instantaneously injected .mlo a uniform, one tlzhmensn:)nat
flow field, it will pass through the aquifer as a pulse with a peak concentration, fi"‘:'“ns
some time after injection, £,,,. The solution to Equation 2.18 under these conditio

(Sauty 1980} is in dimensionless form:

Celtr, P.) = G‘;—ﬁ exp( - 4% (1-— rR)l) (2.28)
with
B = G 030 1 = ) @29
where

= (14 £,"2)12 - p,7! (dimensionless time at which peak
concentration Occurs)
C.R = C/Cmax . .
In Figure 2,10, Gy (G/G,ae) tor 2 slug injected into a uniform one-dimensional
flow field is plotted against dimensionless time, g, for several Peclet numbers. It can be

seen that the time for the peak concentration {G,,,) o occur increasc?s w:(tjt: ‘l.he Per._'let
number, up to a limit of #; = 1. Breakthrough becomes more symmetric with increasing

P,

:Rm::

2.8.7 Continuous Injeclion inte @ Uniform Two-Dimensional Flow Field

if a tracer is continuously injected into a uniform flow field from a single_ pf)int lhat. fully
penetrates the aquifer, a two-dimensional plume will form that locks similar to Figure
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X H 2n(D D)2 exp 20D, Ky :—Dz(";:'l-g_r)) ] (2.30)

Ky = the modified Bessel function of th
e second kind
(values are tabulated in Appendix B) and zero order

Q= rate at which a tracer of concentration G Is being injected

wlhere

Ground-water flow
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Continuots

source
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Source: C. W, Fe er, Apphed Hydrogeofogy, 2nd ed, (‘IEW York: Macmillon Publis 1ng Con rpany, ] 988,
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The two-dimensional growth of a plume from a continuous source can be tracked
through time using 2 solution to Equation 2.19 developed by Y. Emsellem {see Fried

1975). The solution has the form

clxy 0= Wiﬁ)m exp(;g) {(w(o, B) — (s, B)] (z.31)

)2 27172
B (o, ):t + (o))
4D;* ' 4D Dy
t== time
w/(r, 8] = a function derived by Hantush and tabulated in Appendix C
(In well hydraulics this function is known as the leaky well
function Wiz, 1/b).)

where

2.8.8 Slug Injection into a Uniform Two-Dimensional Flow Field

If a slug of contamination is injected over the full thickness of a two-dimensional uniform
flow field in a short period of time, it will move in the direction of low and spread with
time. This result is illustrated by Figure 2.12 and represents the patern of contamination
at three increments that result from a one-time spill. Figure 2,12 is based on the results
of a laboratory experiment conducted by Bear (1961). Figure 2.13 shows the spread of
a plume of chloride that was injected into an aquifer as a part of a large-scale field test
(Mackay et al. 1986). The plume that resulted from the field test is more complex than
the laboratory plume due to the heterogencities encountered in the real world and the
fact the plume may not be following the diffusional model of dispersion.

De Josselin De Jong (1958) derived a solution to this problem on the basis of a
“statistical treatment of lateral and transverse dispersivities. Bear (1961) later verified it
experimentally. If a tracer with concentration G is injected into a two-dimensional flow
field over an area A at a point (xg, %), the concentration at a point (x, ), at time ¢ after

the injection is

Cod ; (x— (= 200 (—w)
Clox p t) = ————3z xXp| — - 2.32
&2 0 = Doy P ADyt iog | #3P
ylem)
Initial point injection
CICy = 100%
1S o A Cl%ea. oae 05Fo_  oeemeen 0.5% ~n.._
0 B e 3 | /A (i LA
D777 A RN L e
-r e n
5 10

Distance x from
injection point (cm)

FIGURE 2.12 Injection of a slug of a tracer into @ iwo-dimensional flow fleld shown at threa fime
increments. Experimental results from ). Bear, Journa! of Geophysical Research 66, no. 8 {1961):2455—

67. Copyright by the American Geophysical Union.
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FIGURE 2.13  Vedically averaged chloride concentration af 1 day, 85 days, 462 doys, and 447 doys

after the injection of o slug into o shallow equifer, Source: D. M. Mockay et al. Water Resources Research
22, no. 13 (1986):2017-29. Copyright by the American Geophysical Union,
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